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Abstract. In this short paper we illustrate by few examples the special role played by higher-order
Riccati equations in the construction of Bäcklund transformations for integrable systems.

1. Introduction

The Riccati equation [1]

dv

dx
(x) = α(x) + β(x)v(x) + v2(x) (1)

the simplest nonlinear ordinary differential equation, plays a very important role in the solution
of integrable nonlinear partial differential equations. These equations are characterized by
being the compatibility conditions between two linear partial differential equations (the Lax
pair) for an auxiliary function, the so-called wavefunction [2]. Among the consequences of the
existence of a Lax pair is the fact that one can obtain for them a denumerable number of exact
solutions, the so-called soliton solutions. The soliton solutions and their superpositions can
be obtained recursively as solutions of the appropriate Bäcklund transformation, a differential
relation between two different solutions of the nonlinear equation, starting from a trivial,
in general constant, solution of the nonlinear partial differential equation. The best known
integrable nonlinear partial differential equation is the Korteweg–de Vries equation (KdV)

ut = uxxx + 6uux vx = u (2)

whose simplest B̈acklund transformation is given by (1).
The Riccati equation, though a nonlinear equation, is characterized by the fact of

possessing a superposition formula, as it is the case for all linear equations and using the
Cole–Hopf transformation [3] we can reduce it to a linear Schrödinger equation. By using
the Cole–Hopf transformation one can obtain a whole class of nonlinear ordinary differential
equations, which possesses the same kind of properties as the Riccati equation, the so-called
Riccati chain [4].

In this paper we will show that also the higher-order members of the Riccati chain play
the role of B̈acklund transformations for nonlinear integrable partial differential equations.
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In section 2 we will review the known results on the Riccati equation and its chain, while
section 3 is devoted to examples of equations of the Riccati chain, which appear as Bäcklund
transformations for the Sawada–Kotera, the Tzitzeica and the Fritzhugh–Nagumo equations.
In section 4 a fewconcluding remarks and comments are presented.

2. The Riccati equation and its chain

The Riccati equation (1) is the simplest nonlinear differential equation which, being
linearizable, can be completely solved. It is the only first-order nonlinear ordinary differential
equation which possesses the Painlevé property [1], i.e. which has no movable singularity.
Moreover, as was shown by Lie and Scheffers [13], the Riccati equation is the only ordinary
nonlinear differential equation of first order which possesses a (nonlinear) superposition
formula

v̂(x) = v1(x)(v3(x)− v2(x)) + kv2(x)(v1(x)− v3(x))

v3(x)− v2(x) + k(v1(x)− v3(x))
(3)

i.e. the solution̂v(x) is nonlinearly expressed in terms ofv1(x), v2(x), v3(x) which are given
solutions of the same Riccati equation (1) andk is a constant parameter. The existence of a
nonlinear superposition formula allows one to construct a denumerable set of solutions starting
from three given solutions.

Most of the properties of the Riccati equation are also shared by the Riccati chain. The
N -order equation of the Riccati chain is given by the following formula:

LNv(x) +
N∑
j=1

αj (x)
(
Lj−1v(x)

)
+ α0(x) = 0 (4)

whereN is an integer characterizing the order of the Riccati equation in the chain,L is the
following differential operator:

L = d

dx
+ cv(x) (5)

andαj (x), j = 0, 1, . . . , N areN + 1 arbitrary functions. The lowest-order equations in the
chain after Riccati equation (1) are

N = 2:
d2v

dx2
+
[
α2(x) + 3cv(x)

]dv

dx
+ c2v3(x) + cα2(x)v

2(x) + α1(x)v(x) +
α0(x)

c
= 0

(6)

N = 3:
d3v

dx3
+
[
α3(x) + 4cv(x)

]d2v

dx2
+ 3c

(
dv

dx

)2

+
[
6c2v2(x) + 3cv(x)α3(x) + α2(x)

]dv

dx
+c3v4(x) + c2α3(x)v

3(x) + cα2(x)v
2(x) + α1(x)v(x) + α0(x) = 0. (7)

Let us notice that theN -Riccati chain is a polynomial expression inv(x) and its derivatives
are such that the coefficient of the(N − 1)-derivative ofv is linear inv, that of the(N − 2)-
derivative is quadratic inv and that of zeroth-order derivative is a polynomial inv of order
N + 1.

By the Cole–Hopf transformation

cv(x)ψ(x) = dψ

dx
(x) (8)
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the whole class of equations (4) linearizes to a linear ordinary differential equation with variable
coefficients of orderN + 1,

N∑
j=0

αj (x)
djψ

dxj
+

dN+1ψ

dxN+1
= 0. (9)

Observe that by a trivial transformation the linear equations (9) can be always put in the
Gel’fand–Dickey form [7].

One can show, using (8) and (9) that a nonlinear superposition formula can be derived for
any equation of the Riccati chain. Moreover, the whole Riccati chain possesses the Painlevé
property; for example, the second-order Riccati equation is equivalent to equation VI in the
Ince classification of the equations possessing the Painlevé property (p 334 of [1]).

When theN -Riccati equation represents a Bäcklund transformation then the coefficients
αj also depend on the ‘time’ variablet in a parametric way and are expressed in terms of a
known solution of the given nonlinear partial differential equation. When the given solution is
constant then the linear equation (9) has constant coefficients and generically its solutionψ(x)

is written out as a combination of exponential functions. These exponential functions are the
main ingredients in the construction of the soliton solutions of theN -Riccati equation (4).

3. Examples of applications

In this section we consider few examples of nonlinear evolution equations, which have as
Bäcklund transformations a higher Riccati equation. As one can deduce from equations (4)
and (9), the nonlinear equations are obtained from the compatibility of a Lax pair given by
linear operators of order greater than two.

3.1. The Sawada–Kotera equation

The Sawada–Kotera equation [8] is the nonlinear partial evolution equation

ut = u5x + 10(uuxxx + uxuxx) + 20u2ux u = u(x, t). (10)

This equation has the same terms as the higher-order KdV equation [2],

ut = u5x + 10(uuxxx + 2uxuxx) + 30u2ux u = u(x, t) (11)

but has different constant coefficients. Rewriting equations (10) and (11) in terms of a potential

v(x, t) =
∫ ∞
x

u(y, t)dy

we can easily verify that the highest-order KdV equation (11) has the lowest-order Bäcklund
transformation expressed by a 1-Riccati equation, while for the Sawada–Kotera equation such
a Bäcklund transformation is given by a 2-Riccati equation (6) with

c = − 1
3 α2 = v̂(x, t) α1 = 1

3 v̂
2 − v̂x

α0 = v̂v̂x − v̂xx − 1
9 v̂

3− µ (12)

wherev̂ is any solution of the potential Sawada–Kotera equation andµ is an arbitrary constant,
the B̈acklund parameter.
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The above result corresponds to the fact that the ‘space part’ of the Lax pair for
equation (10) is given by a third-order spectral problem. Such a spectral problem can be easily
obtained from the B̈acklund transformation using the following Cole–Hopf transformation:

v̂ = v − 3
ψx

ψ
(13)

and reads

ψxxx + v̂ψxx +
(

1
3 v̂

2 − v̂x
)
ψx +

(
v̂v̂x − v̂xx − 1

9 v̂
3− µ)ψ = 0. (14)

For constant̂v, a real solution of equation (14) is given by

ψ(x, t) = A(t) exp
[
µ + 1

9 v̂
3
]3/2

x

+B(t) exp
[−(µ + 1

9 v̂
3
)3/2]

x cos
[

1
2((µ + v̂3/9)

√
3)x + ϕ(t)

]
. (15)

From (13) and (15) one obtains a soliton solution of the potential Sawada–Kotera equation,

v = −3α2(x)
{
A(t) eα(x) +B(t) e−α(x) cos

[
1
2

√
3α(x) + ϕ(t)

]}−1{
A(t) eα(x)

−B(t) e−α(x)
[

cos
(

1
2

√
3α(x) + ϕ(t)

)
+ 1

2

√
3 sin

(
1
2

√
3α(x) + ϕ(t)

)]}
(16)

whereα(x) := (µ+ 1/9ṽ3)3/2x. The solution (16) is a solution of the 2-Riccati equation. The
requirement that solution (16) satisfies the potential Sawada–Kotera equation determinesA

andB as functions of the ‘time’ variable.

3.2. The Tzitzeica equation

Consider the case of the Tzitzeica–Bullough–Dodd–Zhiber–Shabat [9] equation in the rational
form

vvxt − vxvt − v3 + 1= 0. (17)

The equation (17) is consistent with 2-Riccati equation (6) iff

α2 = 0 c = 1 α1 = v̂xx

v̂
α0 = λ ∈ R

wherev̂ is another solution of the Tzitzeica equation in the rational form (17) andλ is the
Bäcklund parameter. Using the Cole–Hopf transformation

v̂ = v +
ψx

ψ

we obtain a third-order linear spectral problem [10]

ψxxx − v̂xx
v̂
ψx + λψ = 0. (18)

Note that the Tzitzeica equation (17) is invariant under the permutationP(∂x, ∂t )→ (∂t , ∂x).
So, the ‘time part’ of the Lax pair is given by a third-order spectral problem wherex is replaced
by t andλ by 1/λ.
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3.3. The Fitzhugh–Nagumo equation

A similar result can be obtained for the Fitzhugh–Nagumo equation [12]

vt − vxx + v(1− v)(a − v) = 0 −16 a 6 1. (19)

Writing the 2-Riccati equation (6) for the fieldv we can show that equation (6) is compatible
with equation (19) iff:

c = 2−1/2 α2 = −2−1/2(1 +a) α1 = 2−1a (20)

α0 = v̂xx + 3× 2−1/2v̂v̂x + 5
2 v̂

3 + 2−1/2(1 +a)v̂x + 1
2 v̂

2(1 +a)− 1
2av̂ (21)

wherev̂ is another solution of equation (17). The 2-Riccati (20) is associated with a third-order
spectral problem

ψxxx − 2−1/2(1 +a)ψxx + 2−1aψx

+
[−v̂xx + 3× 2−1/2v̂v̂x + 5

2 v̂
3 + 2−1/2(1 +a)v̂x + 1

2 v̂
]
ψ = 0 (22)

and the corresponding Darboux transformation [12] is given by

v = v̂ + 21/2ψx

ψ
. (23)

For v̂ = 0 we have

ψ = A(t) e−2−1/2·x +B(t) e−2−1/2ax

from which we obtain the ‘soliton’ solution [15]

v = v0 − a1/2v̂x − 221/2a

a − 1
(1− v̂2)1/2 ln

∣∣∣∣cosh

(
a − 1

221/2
x + ϕ(t)

)∣∣∣∣.
Let us notice, however, that both the Bäcklund transformation (20) and the spectral problem
(22) are free of a spectral parameter, usually an indication of nonintegrability.

4. Conclusions

In this short paper we have shown that there is a strong relationship between Riccati equations
and B̈acklund transformations for integrable nonlinear partial differential equations. As has
been established in many of the well known cases [14], the simplest Bäcklund transformation is
given by the classical first-order Riccati equation. There are, however, a few well known cases
in which the simplest B̈acklund transformation is given by a higher-order differential equation.
We have demonstrated by a few examples that in such a case the Bäcklund transformation is
given by a higher Riccati equation, higher in the so-called Riccati chain. Not all known cases of
fifth-order equations have B̈acklund transformations having the form of one of the Riccati chain
equations. For example the Kaup–Kupershmidt equation [11] has a Bäcklund transformation
[17] given by a second order differential equation, which is not equivalent to the second-order
equation of the Riccati chain but it reduces to it by a contact transformation [5]. The Riccati
chain is obtained from theSl(N,R) matrix Riccati equation [6] with the restriction that its
linear problem can be written as a scalar differential equation. By different reduction of the
matrix Riccati equation we can think of constructing different Riccati chains.

Bäcklund transformations can be thought of as conditional symmetries for the equation
under study [18], i.e. symmetries of the overdetermined system obtained by adding to the
given differential equation under investigation differential constraints for which the symmetry
criterion is identically satisfied. Up to now the only set of conditions for which the symmetry
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criterion is identically satisfied is given by first-order differential equations [19]. The fact,
shown here, that higher-order Riccati equations may also play a role in the construction
of Bäcklund transformations for some nonlinear partial differential equations indicates the
possibility of introducing higher-order conditional symmetries. This result can open the way
to the construction of new classes of exact solutions for many physically important differential
equations [20, 21]. Work on the extension of these results to the case of matrix Riccati chains
and their reduction in application to nonlinear partial differential equations is in progress.
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a ses point critiques fixesThèse, Paris (1910) Acta Math.34 317–85
Sawada K and Kotera T 1974 A method for findingN -soliton solutions of the KdV equation and KdV like

equationProg. Theor. Phys.511355–67
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